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Deriving the force-displacement relationships for

indentation problems without solving the corresponding
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A b s t r a c t

The force-displacement relationships for spherical, cylindrical and conical indentations,
and indentations by a �at cylindrical or rectangular punch are derived up to a single constant
by dimensional analysis and basic geometric and mechanics considerations, without solving
the corresponding boundary-value problems. Only one experimental data point su�ces to
fully determine the force-displacement relationship of elastic indentation, without knowing
the pressure distribution in the contact region. Results obtained by using exact or proposed
trial pressure distributions are compared and discussed.
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1 Introduction

Indentation testing is of great importance for the determination of the hardness of a material [1]-[4].

Indenter is pressed into the material to produce a small impression and the mechanical properties are

estimated from the relationship between the applied force and the depth of the indentation. Various

types of indenters are in use, as described in standard textbooks of materials science and engineering

[5, 6]. The Brinell hardness involves spherical ball indenters, while the Rockwell hardness is based

on conical indenters. In this paper we revisit the derivation of the relationship between the applied

force and the depth of the indentation in the range of in�nitesimal elastic deformation. Spherical,

cylindrical, and conical indenters, pressed into an isotropic elastic half-space, are analyzed, as well
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as indenters in the form of �at cylindrical or rectangular punches [7]-[11]. It is shown that in each of

these cases the force-displacement relationship can be derived up to a single dimensionless constant

by dimensional analysis and by basic geometric and mechanics considerations, without solving the

entire indentation boundary value problem at hand. The mechanics considerations include only

the referral to fundamental Boussinesq or Flamant problems of a concentrated vertical force on

the surface of a half-space [16, 7], and the energy requirement that the work of the indentation

force must be equal to the work of statically equivalent pressure transmitted to the half-space

by the indenter on the corresponding displacements below the indenter. To specify the unknown

constant, the expression for the pressure distribution within the contact zone needs to be reasonably

assumed. If this is the correct pressure distribution, e.g., a semi-ellipsoidal (semi-elliptical) in

the case of spherical (cylindrical) indentation, the exact value of the constant is obtained, but

using any reasonable trial pressure distribution, including a uniform pressure distribution in the

case of indentation by a spherical ball, gives an error of less than 5%. The results obtained for

di�erent approximate pressure distributions are discussed. The indentation sti�ness is evaluated

for all considered types of indentation. Because for each considered indenter only one parameter

in the force-displacement relationship is not speci�ed by the presented analysis exactly, only one

experimental data point is needed to fully specify the force-indentation relationship, without making

any assumption about the contact pressure.

2 Indentation by a rigid spherical ball

Figure 1 shows the cross section of a smooth rigid spherical ball of radius R pressed against an

isotropic elastic half-space with elastic constants E and ν. The depth of the indentation due to

applied force F is denoted by δ. The ball is in contact with the material of a half-space for

w(a) ≤ z ≤ w(0), where w(0) = δ and w(a) = δ − δ0, where δ0 is the height of the contact zone.

The vertical displacement w = w(r) within the contact zone corresponds to spherical shape of the

indenter, thus satisfying the equation r2+[w(r)+R−δ]2 = R2. For shallow indentation, w(r) ≪ R,

this spherical shape can be approximated by the paraboloid shape

w(r) = δ − r2

2R
, r ≤ a , (2.1)

where a is the radius of the base of the contact region (radius of the projected contact surface),

as sketched in Fig. 1. The height of the spherical sector of the ball which is in contact with a

half-space is δ0 = a2/(2R), because a is the geometric mean of δ0 and 2R − δ0, with δ0 ≪ R. The

objective is to determine the force-displacement relationship F = F (δ).

2.1 Dimensional analysis

It is reasonable to assume that the relationship between F and δ involves the dimensional quantities

E and a. The radius of the ball R is not explicitly included because it is expected, on physical and

geometric grounds, that a unique value of R corresponds to given values of a and δ. Furthermore,

by self-similarity of the elastic spherical indentation process, the height of the contact zone δ0 is

expected to be proportional to the indentation depth δ, independently of the value of F , and does

not need to be included explicitly either. Therefore, by applying the Buckingham Π theorem [12, 13]

2



R

a

z,w

d

rdR

F

n)(E ,
d0

Oinitial free surface

Figure 1: A rigid spherical ball of radius R pressed into an elastic half-space by the force F .
The depth of the indentation is δ, and a is the radius of the contact at z = δ− δ0, where δ0
is the height of the contact zone. The elastic properties of a half-space are E and ν.

one can readily identify the following two independent non-dimensional groups

Π1 =
δ

a
, Π2 =

F

Ea2
, (2.2)

and they must be related through some function f by

δ

a
= f

(
F

Ea2

)
. (2.3)

In linear elasticity, for a given pressure distribution acting on the surface of a half-space over a

circular region of a given radius a, statically equivalent to given force F , the displacement δ must

depend linearly on F/E, thus (2.3) simpli�es to

δ

a
= c(ν)

F

Ea2
⇒ δ = c(ν)

F

Ea
, (2.4)

where c(ν) is the Poisson ratio dependent coe�cient, to be determined in the sequel. An alternative

dimensional analysis of contact problems was used in [7], p. 89-90; see also [14, 15]. Note that a in

(2.4) also depends on F , thus (2.4) is a nonlinear relationship between the indentation depth δ and

the force F .

2.2 The coe�cient c(ν)

We show next, without solving the complete indentation boundary-value problem, that c(ν) =

c0(1 − ν2), where c0 = const. This is accomplished by referring to the fundamental Boussinesq

problem of a concentrated vertical force acting on the surface of a half-space (Fig. 2a). The vertical

component of the displacement of the point of the free surface z = 0, at a distance r from the point

of the application of F is (e.g., [7], (3.22b), p. 52, or [16], eq. (205), p. 365)

w(r) =
1− ν2

E

F

πr
. (2.5)
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Figure 2: (a) A vertical concentrated force F applied to the surface of a half-space. The
vertical component of the displacement at the surface point at a distance r from the force
is w(r). (b) The displacement of the midpoint O between two vertical forces F/2 at the
distance 2r from each other is denoted by δ. (c) The axisymmetric pressure distribution
p = p(r) applied to the surface of a half-space within the circle r ≤ a, with p(0) = p0 and
p(a) = 0.

If there are two vertical forces, each of magnitude F/2, acting on the surface of a half-space at a dis-

tance 2r from each other (Fig. 2b), the vertical displacement of the midpoint O is, by superposition

using (2.5),

δ =
1− ν2

E

F

πr
. (2.6)

The same vertical displacement is produced at the center of the circle of radius r by uniformly

distributed line force of magnitude F/(2πr) (per unit length), acting along that circle. Thus it

follows by integration that the vertical displacement at the center of a circular region of radius a,

loaded by an arbitrary axisymmetric pressure distribution p = p(r), Fig. 2c, is

δ =
1− ν2

E

∫ a

0

p(r)2πrdr

πr
≡ 2

1− ν2

E

∫ a

0

p(r)dr . (2.7)

By symmetry, the slope of the vertical line (z-axis) is equal to zero.

Because in the indentation by a spherical ball the pressure over the contact region r ≤ a is

axisymmetric, and F =
∫ a

0
p(r)2πrdr, the comparison of (2.4) and (2.7) shows that

c(ν) = c0(1− ν2) , c0 =
1

π

∫ 1

0
p(ρ)dρ∫ 1

0
ρp(ρ)dρ

, ρ =
r

a
. (2.8)

Consequently, (2.4) becomes

δ = c0
1− ν2

E

F

a
, or F =

1

c0

E

1− ν2
aδ . (2.9)

Because F in this expression depends on the product of a and δ, and a depends on δ, equation

(2.9) implies a nonlinear force-displacement relation. Also, the average pressure p̄ = F/πa2 is

proportional to δ/a.

2.3 Expression for a in terms of R and δ

The relationship between the height of the contact zone δ0, the contact radius a, and the radius

of the ball R has already been established by spherical geometry of the indenter and is given in
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linear theory by a2 = 2Rδ0. One cannot identify the corresponding relationship among a, R,

and δ, without solving the entire boundary-value problem, but one can observe by self-similarity

of spherical indentation process within the elastic range of indentation that δ and δ0 should be

proportional to each other, δ0 = kδ, and, therefore,

a2 = 2kRδ , k = const. (2.10)

If (2.10) is substituted into (2.9), it follows that

F = ζ
E

1− ν2
R1/2 δ3/2 , ζ =

√
2k

c0
, (2.11)

which establishes the well-known F ∼ δ3/2 force-indentation relationship of spherical indentation.

It remains to determine or estimate the values of non-dimensional constants c0 and k, and thus ζ.

From an experimental point of view, only one experimental data point would, in principle, su�ce

to specify ζ and thus, from (2.11), the force-displacement relationship. If multiple measurements

of F versus δ are made, ζ can be determined with reduced uncertainty from the slope of the best

linear �t of F versus δ3/2 data. We proceed with analytical estimates of c0 and k.

2.4 Determination of c0 and k

The constants c0 and k cannot be determined exactly without solving the entire boundary-value

problem of spherical indentation. However, if one assumes that the pressure distribution within the

contact region r ≤ a is ellipsoidal

p(r) = p0

(
1− r2

a2

)1/2

, p0 =
3

2
p̄ , p̄ =

F

πa2
, (2.12)

it readily follows from (2.8) that

c0 =
3

4
. (2.13)

Of course, the semi-ellipsoidal pressure distribution is known to be the correct pressure distribution

(Hertz pressure) from the existing solution to the boundary-value problem of indentation by a

spherical ball, e.g., [7], p. 92 and [10], p. 87, but it could have been reasonably assumed even

without referring to that solution, because p(r) in (2.12) has a maximum value at the center, with

the zero slope, and it vanishes along the edge of the contact r = a (to avoid stress discontinuity across

the edge), with an in�nite pressure gradient in the radial direction (to enhance the indentation),

all of which features could have been reasonably anticipated. An alternative pressure distribution

with such features is p(r) ∼ cos1/2(πr/2a); by (2.8) this would give c0 = 0.7635, which is only 1.8%

di�erent from the exact value c0 = 0.75, corresponding to semi-ellipsoidal pressure distribution.

It remains to determine the constant k. To that goal, we rewrite (2.1) by using (2.10) as

w(r) = δ

(
1− k

r2

a2

)
, (2.14)

and impose the condition that the work done by the force F on the displacement δ,

WF =

∫ δ

0

F (δ)dδ =
2

5
Fδ , (2.15)
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must be equal to the work done by the statically equivalent pressure distribution p(r) on the

displacement w(r),

Wp =
1

2

∫ a

0

p(r)w(r)2πrdr . (2.16)

Upon substitution of (2.12) and (2.14) into (2.16), it follows that

Wp =
1

2
Fδ

(
1− 2k

5

)
. (2.17)

Thus, by equating (2.15) and (2.17), one obtains k = 1/2, i.e.,

δ0 =
δ

2
, a2 = Rδ . (2.18)

The energy considerations in the analysis of elastic contact, with di�erent objectives, have also been

used in [17].

The substitution of c0 = 3/4 and k = 1/2 into (2.11) gives ζ = 3/4 and thus the famous

nonlinear relationship of spherical indentation (e.g., [7], eq. (4.23), p. 93; [18], eq. (11.50), p. 364),

F =
4

3

E

1− ν2
R1/2 δ3/2 . (2.19)

Consequently, for a given indentation depth δ, the larger R the larger F . On the other hand, for a

given contact radius a, the larger R the smaller F , because δ = a2/R.

The total strain energy stored in the half-space is U = 2Fδ/5 = (8E∗/15)R
1/2δ5/2, where

E∗ = E/(1 − ν2), such that F = ∂U/∂δ; e.g., [19]. The elastic indentation sti�ness is K =

∂2U/∂δ2 = ∂F/∂δ = 2E∗R
1/2δ1/2. Furthermore, the average pressure in the contact region is

proportional to a/R (or δ/a),

p̄ =
F

πa2
=

4

3π

E

1− ν2

a

R
. (2.20)

In the analysis of the indentation problems beyond elastic range, it is often assumed that the

average pressure is κ(a/R)1/n, where κ and n(> 1) are material parameters (Meyer's law [20, 21]),

generalizing the linear relationship (2.20).

2.5 Trial pressure distributions

If an arbitrary trial pressure distribution is assumed, it readily follows that the constant k is

determined from

k =
1

5

∫ 1

0
ρp(ρ)dρ∫ 1

0
ρ3p(ρ)dρ

. (2.21)

For example, if p(ρ) ∼ p̄ cos1/2(πρ/2), then k = 0.5105, and since in this case c0 = 0.7635, one

obtains in eq. (2.19) ζ = 1.3233 rather than 4/3, which is an error of only 0.75%. If a uniform

pressure distribution (p = p̄ = F/πa2) is assumed, then k = 0.4, c0 = 0.6366, and ζ = 1.405, which

is an error of about 5%. If p(ρ) ∼ p̄(1−ρ2)1/3 is used, then k = 0.4667, c0 = 0.7141, and ζ = 1.3628,

the error being less than 1.5%. Finally, if p(ρ) ∼ p̄(1 − ρ2)2/3, then k = 0.5333, c0 = 0.7843, and

ζ = 1.3169, with an error of less than 1.25%. The proposed trial pressure distributions are shown

graphically in Fig. 3a, all being normalized by the average pressure p̄ = F/πa2.
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Figure 3: (a) The shapes of four considered pressure distributions, normalized by the average
pressure p̄ = F/πa2, in the case of the indentation by a spherical ball. (b) The shapes of
four considered pressure distributions, normalized by F/2a, in the case of the indentation by
a circular cylinder. The coe�cient 1.2732 = 4/π; the other shown coe�cients are obtained
numerically, so that the force F is the same in each case. For example, 1.311 = π/4E(π/4, 2),
where E(π/4, 2) is the value of the incomplete elliptic integral of the second kind at π/4.

3 Indentation by a rigid circular cylinder

The cross section of an in�nitely long smooth rigid cylindrical indenter of radius R pressed against

an isotropic elastic half-space is shown in Fig. 4a. The applied force per unit length of the cylinder

is F , and the depth of the resulting indentation relative to the initial level of the free surface

(shown dashed) is δ. The height of the contact with the material of a half-space is δ0, and 2a is the

maximum width of the contact. For shallow indentation, the circular contact can be approximated

by the parabolic shape

w(x) = δ − δ0
x2

a2
, |x| ≤ a , (3.1)

where w(0) = δ and w(±a) = δ − δ0. The rigid-body translation is eliminated by requiring that

w(±b) = 0, for a selected value of b. By circular geometry, a is the geometric mean of 2R− δ0 and

δ0, which for δ0 ≪ R simpli�es to a2 = 2Rδ0, independently of b.

3.1 Dimensional analysis

The relationship between F and δ0 is expected to involve the plane-strain modulus of elasticity

E∗ = E/(1 − ν2) and the contact semi-width a. The radius of the cylinder does not need to be

explicitly included because it depends on a and δ0, being related to them by a2 = 2Rδ0. By applying

the Π theorem the following two independent non-dimensional groups can then be identi�ed

Π1 =
δ0
a

, Π2 =
F

E∗a
, (3.2)
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which must be related by
δ0
a

= f

(
F

E∗a

)
. (3.3)

For a given pressure distribution due to a given force F , acting over a given length 2a of the surface

of a half-space, the displacement δ0 in plain-strain linear elasticity must depend linearly on F/E∗,

and (3.3) reduces to
δ0
a

= c0
F

E∗a
⇒ δ0 = c0

F

E∗
, c0 = const. (3.4)

Thus, for a given indentation force F , the contact height is proportional to F/E∗, independently

R

a

z,w

d

x

F

d0

initial free surface
dR

n)(E ,

0

b

z,w

d

x

F

0

a

R

d0

(a) (b)

Figure 4: (a) A rigid circular cylinder of radius R pressed into an elastic half-space by a
force F (per unit length of the cylinder). The height of the cylindrical cap in contact with
the material of a half-space is δ0, and 2a is the corresponding width of the contact. The
depth of the indentation relative to the initial level of the free surface (shown dashed) is δ.
The elastic properties of a half-space are E and ν. (b) A given indentation force F produces
the same contact height δ0, independently of the radius of the cylinder R and the width of
the contact zone 2a. The contact height δ0 ∼ F , while a ∼ F 1/2, such that a2 = 2Rδ0.

of a and R (Fig. 4b). The contact semi-width a is proportional to F 1/2, because a2 = 2Rδ0 =

2c0FR/E∗. In summary, in contrast to spherical indentation, the F = F (δ0) relationship of cylin-

drical indentation is linear and given by

F =
1

c0

E

1− ν2
δ0 . (3.5)

3.2 Estimate of c0

We elaborate next on the determination of c0, without solving the complete boundary-value problem,

by referring only to Flamant's problem of a concentrated vertical line force acting on the free surface

of a half-space (Fig. 5a). The vertical component of the displacement of the point of the free surface

z = 0, at a distance x from the point of the application of F , is (e.g., equation following (2.19b), p.
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Figure 5: (a) A concentrated line force F (per unit length) applied to the surface of a half-
space. The vertical component of the displacement at the surface point at a distance x from
the force is w(x). The vertical displacement w(b) = 0, at the selected point x = b. (b) The
displacement of the midpoint O between two vertical line forces F at a distance 2x from
each other is denoted by δ. (c) The symmetric pressure distribution p = p(x) applied on the
surface of a half-space within the range |x| ≤ a, with p(0) = p0 and p(±a) = 0. The vertical
displacement at x = 0 is denoted by δ.

17, of [7])

w(x) =
2F

π

1− ν2

E
ln

b

x
, (3.6)

where the vertical rigid-body displacement is speci�ed by requiring that w(±b) = 0 for a selected

value of b. If there are two concentrated line forces at the positions ±x (Fig. 5b), the vertical

displacement at the point midway between them is, by superposition,

δ0 =
2F

π

1− ν2

E

(
ln

b− x

x
+ ln

b+ x

x

)
≡ 2F

π

1− ν2

E
ln

(
b2

x2
− 1

)
. (3.7)

The vertical displacement at the center of a symmetric pressure distribution p = p(x) (per unit

length of the cylinder, Fig. 5c) is obtained from (3.7) by integration,

δ =
2

π

1− ν2

E

∫ a

0

p(x) ln

(
b2

x2
− 1

)
dx . (3.8)

If b = a, (3.8) gives

δ0 =
2

π

1− ν2

E

∫ a

0

p(x) ln

(
a2

x2
− 1

)
dx . (3.9)

The comparison of (3.4) and (3.9) establishes that

c0 =
1

π

∫ a

0
p(x) ln(a2/x2 − 1)dx∫ a

0
p(x)dx

. (3.10)

If p(x) is assumed to be semi-elliptical in shape ([7], eq. (4.44), p. 101; [10], eq. (5.4.3a), p. 92;

[11], eq. (2.29), p. 55) ,

p(x) = p0

(
1− x2

a2

)1/2

, p0 =
4

π
p̄ =

2F

πa
, p̄ =

F

2a
, (3.11)
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it follows that ∫ a

0

p(x) ln

(
a2

x2
− 1

)
dx =

π

2
p0a ,

∫ a

0

p(x)dx =
π

4
p0a , (3.12)

and, therefore, from (3.10),

c0 =
2

π
. (3.13)

Consequently, (3.5) becomes

F =
π

2

E

1− ν2
δ0 . (3.14)

Since a2 = 2Rδ0, (3.14) implies that a is proportional to F 1/2, independently of b, i.e.,

a =

[
4(1− ν2)R

πE

]1/2

F 1/2 . (3.15)

Furthermore, the average pressure in the contact region is proportional to a/R, similarly to the case

of the indentation by a spherical ball, see (2.20), i.e.,

p̄ =
F

2a
=

π

8

E

1− ν2

a

R
. (3.16)

The expression (3.14) is the exact expression for F in terms of δ0, because the assumed pressure

distribution (3.11) is the actual pressure distribution of the indentation by a circular cylinder (as can

be deduced from eq. (2.48), page 32 of [7], in the case n = 1 of their analysis). However, even if one

used a reasonable approximate pressure distribution, a reasonably accurate value of c0 would have

been obtained. For example, if the pressure distribution is assumed to be p(x) ∼ p̄(1−x2/a2)1/3, it

follows that c0 = 1.8315/π, with an error of 8.4%, while p(x) =∼ p̄(1−x2/a2)2/3 gives c0 = 2.1453/π,

the error being 7.3%. On the other hand, if it is assumed that p(x) ∼ p̄ cos1/2(πx/2a), the coe�cient

c0 = 2.0591/π, which is less than 3% di�erent from the exact value c0 = 2/π. The utilized

pressure distributions are shown graphically in Fig. 3b, all being normalized by the average pressure

p̄ = F/2a.

3.3 Determination of the indentation depth δ

By substituting the expression for the pressure distribution (3.11) into (3.8), and by using (3.14) to

express F in terms of δ0, the indentation depth becomes

δ =
2δ0
a

∫ a

0

(1− x2/a2)1/2 ln(b2/x2 − 1) dx . (3.17)

i.e., upon integration,

δ

δ0
=

(
b

a

)2

− b

a

√(
b

a

)2

− 1 + ln

 b

a
+

√(
b

a

)2

− 1

 . (3.18)

The nonlinear relationship between δ and F can be readily recognized from (3.18) by observing that

δ0 =
R

2

F

F∗
, a = R

(
F

F∗

)1/2

, F∗ =
π

4
E∗R , E∗ =

E

1− ν2
. (3.19)
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When this is substituted into (3.18), we obtain the nonlinear force-indentation relationship

δ =
R

2


(

b

R

)2

− b

R

√(
b

R

)2

− F

F∗
+ f ln

 b

R
+

√(
b

R

)2

− F

F∗

− 1

2

F

F∗
ln

F

F∗

 . (3.20)

For b ≫ a, (3.20) simpli�es to

δ =
R

4

F

F∗

(
1− ln

F

F∗
+ 2 ln

2b

R

)
. (3.21)

The corresponding elastic compliance is

K−1 =
dδ

dF
=

1

πE∗

(
2 ln

2b

R
− ln

F

F∗

)
. (3.22)

The plot of normalized F/Fmax vs. δ/R, where Fmax = 10−3F∗ (good for metals before the onset
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Figure 6: (a) The normalized indentation force F/Fmax vs. the normalized indentation
depth of cylindrical indentation for the four shown values of b/R. The normalizing force
is Fmax = 10−3F∗, where F∗ = (π/4)E∗R. (b) The corresponding normalized indentation
sti�ness K/K∗ vs. the normalized indentation depth 103(δ/R), where R is the radius of the
cylindrical indenter and K∗ = πE∗.

of plastic yield), is shown in Fig. 6a, and the plot of the corresponding normalized indentation

sti�ness K/K∗ vs. δ/R, where K∗ = πE∗ is shown in Fig. 6b. The four curves correspond to four

selected values of the ratio b/R. As expected, the smaller the value of b the greater the sti�ness

K, for any value of δ. In each case, the sti�ness is equal to zero at δ = 0. Recall that the initial

indentation sti�ness for spherical indentation (K ∼ δ1/2) is also equal to zero.

It is pointed out that there exist a minimum value of b for which the cylindrical indentation is

geometrically and physically possible. This follows from the work condition WF = Wp, which turns

out to be satis�ed for b ≥ bmin, as recently elaborated upon and discussed in [22]. For applications,
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e.g., in an approximate analysis of cylindrical indentation of a large but �nite elastic block [9], large

values of b ≫ a are most useful. The e�ects of the �nite length of the cylindrical indenter were

considered in [23, 24]. Cylindrical indentation of an elastic layer bonded to a rigid substrate has

been analyzed in [25]-[27]. The studies of cylindrical indentation of an elastic half-space with or

without surface tension e�ects [28]-[30], and cylindrical indentation of functionally graded half-space

[31, 32] have also been performed. Micropolar elasticity e�ects have been considered in [33]. In an

approximate analysis of indentation by a circular cylinder of a thin elastic layer (of thickness h)

placed on a frictionless rigid substrate [7], it was assumed that the stress state outside the contact

region |x| ≥ a is identically equal to zero, while σx = 0, σz(x) = E∗ϵz(x), and σy(x) = νσz(x) (plain

strain), where ϵz(x) = −w(x)/h and w(x) = δ(1 − x2/a2). This yields the pressure distribution

p(x) ∼ (1 − x2/a2) and the force-indentation relationship F ∼ E∗(
√
R/h)δ3/2. If the layer is

bonded to the substrate, a modi�ed approximate analysis for an incompressible layer [7] yields

p(x) ∼ (1− x2/a2)2 and the force-indentation relationship F ∼ E(
√
R/h)3δ5/2. See also references

[26, 27].

4 Indentation by a �at cylindrical punch

Figure 7a shows a smooth �at circular cylindrical punch of radius R indented into an isotropic

elastic half-space with elastic constants E and ν. The depth of the indentation due to the applied

force F is δ. Because the contact is in this case a circle of known radius a = R, the force F for linear

elastic indentation is proportional to the depth of indentation δ. Thus, by dimensional analysis it

immediately follows that F = cE∗Rδ, where c is a constant. This linearity also follows from eq.

(2.7), i.e.,

δ =
2

E∗

∫ R

0

p(r)dr , (4.1)

and the expression for the force in terms of the contact pressure

F = 2π

∫ R

0

rp(r)dr . (4.2)

Indeed, by dividing (4.2) with (4.1), one obtains

F

δ
= πE∗

∫ R

0
rp(r)dr∫ R

0
p(r)dr

. (4.3)

Therefore,

F = cE∗Rδ , c = π

∫ 1

0
ρp(ρ)dρ∫ 1

0
p(ρ)dρ

, ρ =
r

R
. (4.4)

The pressure distribution p = p(r) within the contact circle is expected to have a singularity

along the edge r = R (where a small amount of plastic deformation is inevitable, but ignored in this

analysis), and some minimum value p0 with a zero slope at the center r = 0. It is thus reasonable

to assume that

p =
p0√

1− r2/R2
, p0 =

p̄

2
, p̄ =

F

πR2
. (4.5)
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Figure 7: (a) A circular cylindrical punch with a smooth �at end of radius R indented
into an isotropic elastic half-space with elastic constants E and ν. The depth of the
indentation due to the applied force F is δ. There is a pressure singularity along the
edge r = R, and an in�nite displacement slope dw/dr at r = R+, embedded in the dis-
placement pro�le w(r) = (2δ/π) arcsin(R/r), r ≥ R+, predicted by linear elasticity the-
ory. (b) A long rectangular punch of width 2a indented into a half-space. The displace-
ment pro�le of the surface points outside the punch according to linear elasticity theory is
w(x) = δ − (2F/πE∗) ln[x/a + (x2/a2 − 1)1/2], x ≥ a, where the indentation depth δ cor-
responds to the imposed displacement condition w(x = ±b) = 0, for an arbitrarily selected
value of b > a.

It (4.5) is substituted into (4.4), it follows that c = 2, and the force-displacement relationship

becomes

F = 2E∗Rδ . (4.6)

The pressure distribution (4.5) is the actual pressure distribution below the punch, as shown in the

textbooks of elasticity or contact mechanics, e.g., [10], p. 92-96, thus c = 2 is the exact value of c.

If a trial pressure distribution p(r) = p0[1− ln(1− r2/R2)] is used, the value of c determined from

(4.4) is c = 1.9468, which is only 2.7% below the exact value. The simplest (uniform) trial pressure

p = p̄ = F/(πR2) gives c = 1.571, which is 21.5% below the exact value. The strain energy stored

in the half-space is U = Fδ/2 = E∗Rδ2, with the corresponding constant indentation sti�ness,

K = ∂2U/∂δ2 = ∂F/∂δ = 2E∗R.

4.1 Indentation by a long rectangular punch

Figure 7b shows a long smooth rectangular punch of width 2a, indented into a half-space by a vertical

line force F . The non-dimensional groups are δ/a and F/E∗a, and for linear elastic indentation

it follows that the line force proportional to the depth of indentation δ, i.e., F = cE∗δ, where c

is a constant which can be de�ned in terms of the contact pressure as follows. Assuming that the

vertical displacements of the points x = ±b, where b > a, are equal to zero, w(x = ±b) = 0, the
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vertical displacement along the center line of the contact is, similarly to (3.8),

δ =
2

πE∗

∫ a

0

p(x) ln

(
b2

x2
− 1

)
dx , b > a . (4.7)

On the other hand,

F = 2

∫ a

0

p(x)dx , (4.8)

and by dividing (4.8) with (4.7) if follows that

F

δ
= πE∗

∫ a

0
p(x)dx∫ a

0
p(x) ln(b2/x2 − 1)dx

. (4.9)

Consequently,

2 4 6 8 10
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0.5
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1.5

2

2.5

3

Figure 8: The normalized depth of indentation for a long rectangular punch of width 2a

versus β = b/a > 1, where b is a distance from the center of the punch at which the vertical
displacement is imposed to be zero, w(±b) = 0. The normalizing indentation depth is
δ∗ = 2F/πE∗, corresponding to a given value of F and E∗ = E/(1 − ν2). For large values
of β, the indentation depth is well approximated by δ/δ∗ = ln(2β).

F = cE∗δ , c = π

∫ 1

0
p(ξ)dξ∫ 1

0
p(ξ) ln(β2/ξ2 − 1)dξ

, β =
b

a
, ξ =

x

a
. (4.10)

If the contact pressure (per unit length of the punch) is assumed to be [7]

p(ξ) =
p0√
1− ξ2

, p0 =
F

πa
, (4.11)
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the substitution of (4.11) into (4.10) gives

c =
π

2 ln
(
β +

√
β2 − 1

) , F =
πE∗

2 ln
(
β +

√
β2 − 1

) δ . (4.12)

The corresponding indentation sti�ness Kb = F/δ = cE∗ is

Kb =
πE∗

2 ln
(
β +

√
β2 − 1

) , (4.13)

where the subscript b is added to indicate that the sti�ness depends on the choice of the value

of b at which the vertical displacement is imposed to be zero, w(x = ±b) = 0. For a given b, the

indentation sti�ness Kb is constant throughout the elastic indentation process, but it decreases with

the increase of b. For example, Kb = 1.1927E∗ for b = 2a, while Kb = 0.6852E∗ for b = 5a. The plot

of the normalized indentation depth δ as a function of β = b/a is shown in Fig. 8. Geometrically,

the normalizing depth δ∗ = δ(b = β∗a), where β∗ = (e + 1/e)/2 ≈ 1.5431. For large values of β

(e.g., β > 5), the indentation sti�ness is well approximated by (π/2)E∗/ ln(2β). A recent study of

the size e�ect in plane strain �at punch nanoindentation is reported in [34].

5 Conical indenter

Figure 9 shows a smooth rigid conical indenter with the cone angle α pressed into an isotropic

elastic half-space with elastic properties (E, ν). The depth of the indentation due to applied force

F is denoted by δ, the height of the conical cap in contact with the surrounding material is δ0, and

a is the corresponding radius of the contact. The conical contact in the (r, w) coordinate system is

speci�ed by

w(r) = δ − r cotα , r ≤ a , (5.1)

where w(a) = δ − δ0 and δ0 = a cotα. A class of rigid indenters whose pro�le is of the type

δ−w(r) = r2m/(2R)2m−1 (m > 1/2) were also considered for both elastic and inelastic indentation;

for a spherical indenter m = 1, while for a conical indenter m = 1/2, with (2R)2m−1 replaced with

cotα [35, 36]. Size e�ects in the conical indentation of an elasto-plastic solid were considered in

[37], and elasto-plastic indentation of a hemispherical surface inclusion in [38].

5.1 Dimensional analysis

The relationship between F and δ is expected to involve the plane-strain modulus of elasticity

E∗ = E/(1 − ν2) and the contact radius a. The cone angle α is included implicitly through the

expected relationship between δ and a, because a = δ0 tanα, and by self-similarity of the conical

indentation process it is expected that δ0 is proportional to δ. Upon applying the Π theorem the

following two independent non-dimensional groups can be identi�ed

Π1 =
δ

a
, Π2 =

F

E∗a2
, (5.2)

which must be related in linear elasticity by

δ

a
= c0

F

E∗a2
, c0 = const. (5.3)
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Figure 9: A conical indenter with the cone angle α pressed into an isotropic elastic half-space
with elastic constants E and ν. The depth of the indentation due to the applied force F is
δ. The height of the conical cap in contact with the material of a half-space is δ0, and a is
the corresponding radius of the contact.

Thus,

F =
1

c0

E

1− ν2
aδ ≡ tanα

c0

E

1− ν2
δ0δ , a = δ0 tanα . (5.4)

Furthermore, by self-similarity of conical indentation, we can write δ0 = kδ, where k = const., and

(5.4) becomes

F = ζ tanα
E

1− ν2
δ2 , ζ =

k

c0
, (5.5)

which establishes the quadratic force-displacement relationship F ∼ δ2.

Because F is proportional to δ2, and a is proportional to δ0 and thus δ (a = kδ tanα), the

average pressure in the contact region p̄ = F/πa2 depends only on the cone angle α and the elastic

constants, remaining unchanged throughout the indentation process,

p̄ =
F

πa2
=

1

πc0k tanα

E

1− ν2
. (5.6)

5.2 Estimates of c0 and k

By the same analysis as in section 2, see (2.8), if follows that the constant c0 can be expressed in

terms of the contact pressure as

c0 =
1

π

∫ 1

0
p(ρ)dρ∫ 1

0
ρp(ρ)dρ

, ρ =
r

a
. (5.7)

The constant k can also be expressed in terms of the contact pressure by imposing the condition

that the work done by the force F on the displacement δ,

WF =

∫ δ

0

F (δ)dδ =
1

3
Fδ , F =

∫ a

0

p(r)2πrdr , (5.8)

must be equal to the work done by the contact pressure p(r) on the displacement w(r),

Wp =
1

2

∫ a

0

p(r)w(r)2πrdr , w(r) = δ − r cotα . (5.9)
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Figure 10: The shapes of four considered pressure distributions, normalized by the average
pressure p̄ = F/πa2, in the case of conical indentation. The coe�cients shown in the �gure
legend are calculated so that the total force corresponding to each pressure distribution is
equal to F .

It follows that

k =
1

3

∫ 1

0
ρp(ρ)dρ∫ 1

0
ρ2p(ρ)dρ

. (5.10)

To obtain the numerical values of c0 and k, one needs to know or assume the pressure distribution

p = p(r) in the contact region r ≤ a. Because of the stress singularity at the apex of the cone, it is

expected that p(0) is singular (unbounded) at the center of the contact region r = 0. Furthermore,

the pressure is expected to be zero along the contact edge r = a, with a steep (in�nite) slope,

similarly to the case of spherical indentation. Both of these features are embedded in the pressure

distribution

p(r) = p̄ cosh−1(a/r) , p̄ =
F

πa2
, (5.11)

where p̄ is the average pressure. By substituting (5.11) into (5.7) and (5.10), if follows that

c0 = 1 , k =
2

π
. (5.12)

Consequently, ζ = 2/π in (5.5), and the force-displacement relationship becomes

F =
2 tanα

π

E

1− ν2
δ2 , (5.13)

while δ0 = (2/π)δ. The average pressure (5.6) is

p̄ =
F

πa2
=

1

2 tanα

E

1− ν2
. (5.14)
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The force-displacement relationship (5.13) is the correct relationship, because the assumed pres-

sure distribution (5.11) is the actual pressure distribution obtained in the full elasticity solution of

the conical indentation ([10], eq. (5.4.5), p. 96; [11], p. 190). The elastic indentation sti�ness varies

linearly with δ, i.e., K = ∂2U/∂δ2 = ∂F/∂δ = (4E∗ tanα/π)δ, where U = Fδ/3 = (4E∗ tanα/3π)δ
3

is the strain energy stored in the half-space.

If the correct pressure distribution (5.11) was not recognized or known, and if instead the linear

pressure distribution p(r) = 3p̄(1−ρ) was used in (5.7) and (5.10), the calculated coe�cients would

be c0 = 0.9549 and k = 0.6667, giving ζ = k/c0 = 0.6981, which is less than 10% di�erent from the

correct value ζ = 0.6366. The pressure distribution p(r) = −2p̄ ln ρ gives ζ = 0.589, which is less

than 7.5% smaller than the correct value. If a trial pressure distribution is p(r) ∼ p̄[− ln(ρ)]2/3, then

c0 = 1.0106, k = 0.6552, and ζ = 0.6483, which is less than 2% greater than the correct value of

0.6366. The pressure distribution p(r) ∼ p̄ cot1/3(πρ/2) also gives an error of only 2% (ζ = 0.6496).

The plots of the four considered pressure distributions are shown in Fig. 10.

6 Conclusion

The force-displacement relationships for indentation of isotropic elastic half-space by a rigid spher-

ical ball, circular cylinder, circular cone, and �at cylindrical or rectangular punches are derived up

to a single constant by dimensional analysis and by simple geometric and mechanics considerations,

which include referrals to the Boussinesq and Flamant problems only, without solving the entire

indentation boundary value problem at hand. To specify the unknown constant, the expression for

the contact pressure distribution needs to be reasonably assumed. If this is the correct pressure dis-

tribution, e.g., a semi-ellipsoidal (semi-elliptical) in the case of spherical (cylindrical) indentation,

the exact value of the constant is obtained, but using any reasonable trial pressure distribution,

including a uniform pressure distribution in the case of indentation by a spherical ball, gives an

error of less than 5%. For conical indentation, the use of the inverse cosine hyperbolic pressure

distribution gives the exact value of the coe�cient, but using even a linear pressure distribution

gives an error of less than 10%. The results obtained for other approximate pressure distributions

are discussed. The indentation sti�ness is evaluated for all considered types of indentation. From

the experimental point of view, because for each considered indenter only one parameter in the

force-displacement relationship is not speci�ed by the presented analysis exactly, only one data

point is needed to fully specify the force-indentation relationship, without making any assumption

about the contact pressure.
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Uspostavljanje veze izme�u sile i dubine indentacije bez

potpunog rje²avanja problema grani£ne vrijednosti

S a º e t a k

Veza izme�u sile i dubine indentacije u slu£ajevima sferne, cilindri£ne i koni£ne indentacije je us-

postavljena bez potpunog rje²avanja korespondentnog problema grani£ne vrijednosti, s precizno²¢u

do jedne konstante. Ovo je postignuto kori²¢enjem dimenzionalne analize, u sprezi s elementarnom

geometrijskom i mehani£kom analizom problema koncentrisane sile koja djeluje na povr²ini dvodi-

menzionog ili trodimenzionog poluprostora. Da bi se odredila nepoznata konstanta, dovoljan je samo

jedan experimentalni podatak o vezi sile i dubine elasti£ne indentacije, i bez poznavanja rasporeda

pritiska u zoni kontakta. Ukoliko je raspored pritiska precizno ili pribliºno odre�en, vrijednost kon-

stante slijedi analiti£kim putem. Rezultati dobijeni kori²¢enjem ta£ne i pribliºne raspodjele pritiska

u zoni kontakta su upore�eni i diskutovani za sve razmatrane vrste indentacije.
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