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Abstract: The possibility of decomposition of linear n-degree-of-freedom systems with potential, 

circulatory and gyroscopic forces is studied. Criteria that contain conditions for the existence of a real 

linear coordinate transformation, leading to the separation of such a system into independent subsystems 

of dimensions no more than two, are proved. The conditions are expressed in terms of the coefficient 

matrices of the original system. Several specific results are also obtained as consequences of the criteria. 

Three numerical examples are supplied to illustrate the applicability and correctness of the obtained 

results. 

Keywords: linear system; potential forces; circulatory forces; gyroscopic forces; decoupling; congruence 
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1. INTRODUCTION 

 A remarkable class of linear dynamical systems is associated with potential 

(conservative), circulatory and gyroscopic forces and can be described by  

                                                      0
~~~~

=+++ qKqNqGqM  ,                                                    (1)                                                                   

where M
~

, G
~

, N
~

and K
~

 are n by n constant real matrices; the inertia matrix M
~

 is symmetric 

and positive definite ( 0
~~

= TMM ), G
~

 and N
~

 are skew-symmetric ( TGG
~~

−= , TNN
~~

−= ) and 

K
~

 is symmetric. The n-vector of generalized coordinates is denoted by q, and the dots indicate 
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differentiation with respect to the time t. The terms involving G
~

, N
~

 and K
~

 correspond 

respectively to gyroscopic, circulatory and potential forces. Gyroscopic forces occur in, for 

instance, the rotary motion in rotating flexible machinery, spinning elastic systems, 

astrodynamics, satellite control, problems related to the motion of charged systems in magnetic 

fields, order reduction of systems with symmetries, and when using rotating frames of reference 

in analytical dynamics. While it is easy to visualize the presence of potential and gyroscopic 

forces, the presence of circulatory forces is perhaps some-what less intuitive.  Yet, such forces 

arise in many areas of real-life applications. Some examples are control of two legged walking 

robots, self-oscillations (shimmy) in aircraft wheels, flutter in flexible structures, dynamics of 

brake squealing, and wear in paper calendars [1].  

Equation (1) represents a set of coupled second-order ordinary-differential equations 

and can be obtained by the application of Lagrange’s equations  

                              0=



+




−





qq

L

q

L

dt

d


                                                                  (2)    

with the Lagrangian  

                        qKqqGqqMqqqL TTT ~

2

1~

2

1~

2

1
),( −+=                                                  (3) 

and the “dissipative” function  

                                 qNqqq T ~
),(  = .                                                                                   (4)   

 Consider a change of coordinates from q  to p  defined by the real linear transformation  

                                                  qPpPpq 1−==                                                              (5) 

where P  can be any nonsingular real matrix. Noting Eqs. (3) and (4), this transformation of 

coordinates causes M
~

, K
~

, N
~

 and G
~

 to be congruently transformed, i. e.,   

           PMPMM T ~~
=→ , PKPKK T ~~

=→ , PNPNN T ~~
=→ , PGPGG T ~~

=→ .               (6) 

If 0
~
=N  and 0

~
=G  (pure potential system or conservative non-gyroscopic system), one can 

always find the transformation matrix P  so that the new inertia and potential (stiffness) 

matrices are diagonal, i.e., in new coordinates p , called normal (principal or modal) 

coordinates, the system is decomposed into n independent single-degree-of-freedom 

subsystems. This classical result was established by Weierstrass in 1858 in the context of 

simultaneous reduction of two quadratic forms to sums of squares (see [2]). The procedure for 

decoupling such systems is well known and is called modal analysis. When 0
~
N  and/or  
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0
~
G , the system is not completely decomposable because changes of coordinates (5)  that 

makes M  and K  diagonal retains N  and/or G  as skew-symmetric matrices. However, 

sometimes it might be decomposed into several independent subsystems.  Also, it is worth 

pointing out that the minimum number of degrees of freedom necessary to incorporate 

circulatory and/or gyroscopic effects is two. Therefore, it is natural to ask whether or not we 

can decompose system (1) into independent subsystems, each of which has degree-of-freedom 

no more than two, by means of a change of coordinates (i.e. using a congruence transformation). 

The intent of this paper is to show that multi-degree of freedom circulatory gyroscopic potential 

systems can be uncoupled when certain conditions are satisfied.  

The next short section presents some algebraic results, less known to a wider audience 

of readers, which are basic to our further development. In Section 3, the results are formulated, 

proved and discussed. 

2. MATHEMATICAL BACKGROUND 

 The following assertion gives some useful properties of real skew-symmetric matrices 

(see [3,4], for example). 

 Lemma 1. Let B be an nn  real skew-symmetric matrix. Then:   

(a) rankBr =  is even. 

(b) B  has single zero eigenvalue of multiplicity rn− , and r  pure imaginary eigenvalues 

in pairs ji , 1−=i , 2/,...,1 rj = , which are all simple or semi-simple. 

(c) There exists a real orthogonal matrix U  such that                    

                             ( )0,...,0,,..., 22/21 JJdiagBUU r

T = ,                                                     (7)                         

where 2J  is the symplectic unit two-dimensional matrix, i.e, 

                                           








−
=

01

10
2J .  

           The block-diagonal (quasi-diagonal) matrix (7) is the canonical (simplest possible) form 

of a skew-symmetric matrix with respect to orthogonal similarities, while the canonical form 

for a real symmetric matrix is, of course, a diagonal matrix consisting of its eigenvalues along 

the diagonal. Also, notice that form (7) is recognized as the real Jordan form for B  and hence 

plays a fundamental algebraic role [4].  
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 The following assertion plays a key role in our further considerations. It is a counterpart 

of the well-known result which states that two real symmetric matrices can be simultaneously 

diagonalized by a real orthogonal transformation if and only if they commute in multiplication 

[3].   

Lemma 2.[5] Let 
TAA =  and TBB −=  be nn  real matrices, and let be rankBr = . 

Necessary and sufficient conditions that there exists a real orthogonal matrix U  such that 

                                ),...,(ˆ
1 n

T diagAAUU ==                                                     (8)                                                            

and  

                                ( )0,...,0,,...,ˆ
22/21 JJdiagBBUU r

T == ,                                            (9)                                                            

are that 

                                                      ABAB 22 =                                                                      (10)     

and  

                                                    22 )()( BAAB = .                                                                 (11) 

 It is clear that conditions (10) and (11) imply the symmetry of the matrices 
2AB  and 

2)(AB , and vice versa.  

Remark 1. Since Â  is diagonal and B̂  quasi-diagonal, it is easy to see that the matrices 

2B̂  and BAB ˆˆˆ  are diagonal, i. e., 

                           )0,...,0,,...,(ˆ
2

2

2/2

2

1

2 IIdiagB r−=                                                            (12)   

and 

              )0,...,0,,,...,,(ˆˆˆ
1

2

2/

2

2/1

2

12

2

1 −−= rrrrdiagBAB  .                                 (13)                        

 Lemma 3. If all nonzero eigenvalues of the skew-symmetric matrix B  are distinct, then 

condition (10) implies condition (11). 

 Proof.  According to Lemma 1, there exists a real orthogonal matrix U  such that   

                                                        
T

rn

U
B

UB 







=

−00

0ˆ
,                                                    (14) 

and                                          
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T

T
U

AA

AA
UA 








= ˆ̂

ˆ
,                                                     (15)                                                                                                                                  

where  

                                                     ( )22/21 ,...,ˆ JJdiagB r= ,                                              (16)                                                             

and rn−0  is (n-r)-dimensional zero matrix, Â  and A
ˆ̂

 are r and (n-r) dimensional symmetric 

matrices respectively, and A  is r by (n-r) matrix. Then, condition (10) yields 0=A  because B̂  

is nonsingular, and  

                                                                ABBA ˆˆˆˆ 22 =                                                           (17)                                

It follows from (16) that ),...,(ˆ
2

2

2/2

2

1

2 IIdiagB r−= , where 2I denotes 2 by 2 identity matrix. 

Next, after partitioning the symmetric matrix Â , as   2/

1,

ˆˆ
r

jiijAA
=

=  with two-dimensional sub-

matrices ijÂ , condition (17) becomes  

                                                       2/

1,

2
2/

1,

2 ˆˆ
r

jiiji

r

jiijj AA
==

=  ,  

or 0ˆ)( 22 =− ijji A , which yields 0ˆ =ijA  for ji   since, in view of the assumption, all 

numbers 1 , …, 2/r  are distinct. Thus, the matrix A  that satisfy condition (10) must be of the 

form  

                                              
T

r

iii
U

A

Adiag
UA












=

=

ˆ̂
0

0)ˆ( 2/

1
.                                               (18) 

where iiÂ , 2/,...,1 ri = , are two by two symmetric matrices and A
ˆ̂

 is an (n-r)-dimensional 

symmetric matrix. Now, it follows that 22 )()( BAAB = , where the matrices B  and A  are 

determined by Eqs. (14) and (18), since as the easy confirm that the two-dimensional sub-

matrices iiÂ  and  2Ji satisfy this condition.   □ 

3. RESULTS 

 We begin with the observation that in principal coordinates a two-degree-of-freedom 

system (1) has the form  

                                022 =+++ ppJpgJp  .                                                                  (19) 
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Here p  is two-dimensional real vector of principal coordinates, ),( 21 diag=  and 1 , 2 , 

  and g  are real numbers.  

           Suppose that mNrank 2
~
=  and that a transformation (5) decomposes the system (1) into 

independent subsystems, each of which has degree-of-freedom no more than two.  In this case, 

in view of the above observation, we can assume that the transformed system has the following 

form 

                                      0=+++ pppp                                                                    (20)                                                                   

 

with  

                                     ),...,,( 21 ndiag = ,                                                                 (21) 

                                     )0,...,0,,...,( 221 JJdiag m= ,                                                     (22)   

and                            

                                     ( )0,,..., 2]2/[21 JgJgdiag n=                                                           (23)                                                 

where jj g, ,  j0  and ]2/[n  denotes the integer of 2/n . It should be noted that 

when n  is even then there is no scalar zero element at the end of the main diagonal of the matrix 

 , while in the case of odd n  it always appears.                 

 

Theorem 1. Let 0
~~

= TMM , TKK
~~

= , TNN
~~

−= , TGG
~~

−= and mNrank 2
~
= . If  

NG
~~

=  where  , necessary and sufficient conditions for Eq. (1) to be transformed to Eq. 

(20) with 

                ),...,,( 21 ndiag = , )0,...,0,,...,( 221 JJdiag m= , =                           (24)                                                                                             

using a real linear change of coordinates are   

                                             KMNMNNMNMK
~~~~~~~~~~ 1111 −−−− =                                                (25)     

and 

                                         211211 )
~~~~

()
~~~~

( −−−− = MKMNMNMK .                                               (26)        

     

Proof. Necessity. Let nonsingular matrix P  be such that IPMPT =
~

, =PNPT ~
, and  

=PKPT ~
 with   and   quasi-diagonal skew symmetric and diagonal matrices as in (24). 

Then ===  PNPPGP TT ~~
. On the other hand we have TPPM =−1~

, 1~ −− = PPN T , and

1~ −− = PPK T , so =−− NMNMK
~~~~~ 11  

12 −−  PP T
 

12 −− = PP T
KMNMN
~~~~~ 11 −−=  since, in view 
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of Remark 1, 2  is diagonal and therefore it commutes with the diagonal matrix  . Also, 

TTTTTT PPPPPPMNMK === −−−−− 2211 )()
~~~~

(  211 )
~~~~

( −−= MKMN  since, again 

by Remark 1, the matrix  is diagonal and, therefore, commutes with  . Thus, if there is a 

real congruence transformation Ppq =  which transforms Eq. (1) to the form (20), (24) then 

conditions (25) and (26) are satisfied.   

  Sufficiency. Suppose that conditions (25) and (26) are satisfied. Making the 

transformation   qMx 2/1~
= , where the exponent ½ indicates the unique positive definite square 

root of the matrix M
~

, from (6) we get IMMMM == −− 2/12/1 ~~~
, 2/12/1 ~~~ −−== MKMKK T , 

2/12/1 ~~~ −−=−= MNMNN T  and 
2/12/1 ~~~ −−=−= MGMGG T

N= . Now condition (25) after 

multiplication from the left and right by 2/1~ −M  becomes KNKN 22 = , while condition (26) 

after multiplication from the left by 2/1~ −M and from the right by 2/1~
M  becomes 22 )()( NKKN =

. Then, by virtue of Lemma 2, there is an orthogonal matrix U  that transforms simultaneously 

K  and N  to the forms 

                 ),...,( 1 n

T diagKUU == , ( )0,...,0,,..., 221 JJdiagNUU m

T ==  

and, consequently, the transformation UpMq 2/1~ −=  reduces Eq. (1) to the form (20), (24) since 

==  NUUGUU TT . The theorem is proved.  □ 

Remark 2. It is not difficult to see that the real numbers  j  (j = 1,…,n) are eigenvalues 

of the matrix KM
~~ 1− , while the nonzero eigenvalues  of NM

~~ 1−  are ji  (j = 1,…,m). 

Note that the decoupling conditions (25) and (26) trivially hold when either 0
~
=K  or 

.0
~
=N  In the first case the system can be reduced to the form 0=++ ppp   , while in the 

second case, as well-known and previously mentioned in the Introduction, the system can be 

transformed to the completely decupled form 0=+ pp . If 0
~
=G  ( 0= ), Theorem 1 gives 

necessary and sufficient conditions for the quasi-diagonalization of circulatory systems [6,7].  

Remark 3. Obviously, in the so-called pseudo-normal coordinates, i. e., coordinates 

obtained through the transformation xMq 2/1~
= , the equations for motion of the system are 

given by 

                                                0=+++ KxNxxGx  ,                                                       (27)                                                                                                                                        
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where 2/12/1 ~~~ −−== MKMKK T , 2/12/1 ~~~ −−=−= MNMNN T and 2/12/1 ~~~ −−=−= MGMGG T , and 

conditions (25), (26) become 

                                                           KNKN 22 =                                                            (28)                                                                                        

and 

                                                          22 )()( NKKN = .                                                        (29)      

Example 1. Consider the four-degree-of-freedom system described by Eq. (1) in which 

     4

~
IM = , 



















−

−

==

0100

1200

0001

0012

~
KK , 



















−

−
==

0020

0002

2000

0200

~
NN , NGG

~

2

1~
== ,        (30)                                                                                                                        

where 4I  is the 4 by 4 identity matrix. 

The matrices K  and N  in (30) satisfy condition (28) because 4

2 IN −= . Next we 

calculate  

                                       



















−

−

−

=

0001

0012

0100

1200

2KN .                                                                                                            

This matrix is skew-symmetric and then the matrix 2)(KN  is symmetric, i. e. condition (29) is 

also satisfied. Because conditions (28) and (29) of Remark 3 are satisfied and taking into 

account that 4=rankN , the system can be transformed by a real congruence transformation 

into two independent two-dimensional subsystems. Indeed, one easily verifies that the 

coordinate transformation Upx = , where the columns of the transformation matrix U  are the 

following orthonormal eigenvectors of the matrix K   

                Tu 00211
2

22
1 −

+
= ,   ,21100

2

22
2

T

u −
+

=   

                Tu 00211
2

22
3 +

−
= ,   ,21100

2

22
4

T

u +
−

=                                                                                                                                                                                                                      

transforms the system into decomposed form 
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                 0)12(
02

20

01

10

2

1

2

1

2

1

2

1
=








+−

















−
+

















−
+









p

p

p

p

p

p

p

p








                    

                 0)12(
02

20

01

10

4

3

4

3

4

3

4

3
=








−+

















−
+

















−
+









p

p

p

p

p

p

p

p








.                                                                                                                                                                                                                       

  Corollary 1. Let 0
~~

= TMM , TKK
~~

= , TNN
~~

−=  and mNrank 2
~
= . If NG

~~
=  with 

 and all nonzero eigenvalues of the matrix NM
~~ 1−  are distinct, then there exists a real 

linear change of coordinates that transforms Eq. (1) to the form (20), (24) if and only if the 

following condition holds 

                                             KMNMNNMNMK
~~~~~~~~~~ 1111 −−−− = .                                              (31)                                                                                      

Proof. The matrices NM
~~ 1−  and 2/12/1 ~~~ −−=−= MNMNN T  have the same eigenvalues. 

Then, if all nonzero eigenvalues of the matrix NM
~~ 1−  are distinct, according to Remark 3 and 

Lemma 3, condition (25) implies condition (26).   □             

Remark 4.  In the case of a three-degree-of-freedom system described by Eq. (1), 

NG
~~

= together with (31) are necessary and sufficient conditions for its decomposition to the 

form (20), (24). It follows from the fact that in this case in Eqs. (20)-(23) the matrix   is 

proportional to the matrix  , and that any nonzero three-dimensional skew-symmetric matrix 

has distinct eigenvalues.   

Example 2. Consider the system (1) with 

              

















=

504

040

405
~

M ,

















−

−

=

13314

3103

14313
~
K , 

















−

−=

020

202

020
~
N , NG

~
3

~
−= .                   (32)                            

We calculate 

                                                

















−

−

=−

504

025.20

405

9

1~ 1M           

and 

                   KMNMNNMNMKNMNMK T ~~~~~
)

~~~~~
(

161

6206

161
~~~~~ 111111 −−−−−− ==

















−−

−−

−

=          
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and, according to Corollary 1, there exists principal coordinates in which the system 

decomposes into one two-degree and one single degree of freedom subsystems. In order to 

obtain the transformation matrix P  that decomposes the system, we look for solution of the 

generalized symmetric eigenvalue problem uMuK
~~

= . We get the eigenvalues and 

corresponding eigenvectors normalized with respect to the mass matrix M
~

, as follows 

                               21 −= ,  Tu 313
22

1
1 −= ; 32 = ,  Tu 101

23

1
2 = ; 

                                
2

7
3 = , 

T

u 







−−= 1

2

3
1

11

1
3 . 

Since 0
~

2 =uG , we introduce principal coordinates  Tpppp 321=  by the transformation 

Ppq = , where   231 uuuP = . Now it is easy to verify that this transformation reduces 

system (1), (32) to the form                                                                                                                                                                                                                                                                                                                                                                                                                              

                           0
5.3

2

01

10
2

01

10
23

2

1

2

1

2

1

2

1
=







−
+















 −
+

















−
+









p

p

p

p

p

p

p

p








      

                           03 33 =+ pp .                                                                                                                                                                    

Remark 5. When NG
~~

=  and 2
~
=Nrank , condition (31) is necessary and sufficient for 

decomposition of the system described by Eq. (1) to one circulatory gyroscopic subsystem with 

two degrees of freedom and (n-2) potential subsystems with single degree of freedom. 

 Theorem 2. Let 0
~~

= TMM , TKK
~~

= , TNN
~~

−= , TGG
~~

−= and mNrank 2
~
= . If the 

following tree conditions are satisfied  

           KMNNMK
~~~~~~ 11 −− = , KMGGMK

~~~~~~ 11 −− = , GMNNMG
~~~~~~ 11 −− = ,                         (33)                                                                                                                         

then there exists a real linear change of coordinates that transforms Eq. (1) to the form (20) 

with  

                                     ),...,,,...,( 12221 nmmIIdiag  += ,                                                 (34)                                                                                    

                                      )0,...,0,,...,( 221 JJdiag m= ,                                                        (35)    

and 

                                     ( )0,,..., 2]2/[21 JgJgdiag n= ,                                                             (36)                                                                                                                       
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where jj g, , and  j0 . If ]2/[nm  , then for any 0+kmg , kmkm 22122 +−+ =  , 

}]2/[,...,1{ mnk − . 

 Proof. Conditions (33) after multiplication from the left and right by 2/1~ −M  become 

                                         NKKN = , GKKG = , NGGN = ,                                              (37)                                                                                                               

where 2/12/1 ~~~ −−== MKMKK T , 
2/12/1 ~~~ −−=−= MNMNN T

, 
2/12/1 ~~~ −−=−= MGMGG T
. The 

matrices K , N  and G  are real normal matrices, and, in view of (37), they pairwise commute 

in multiplication. Then, according to well-known result (see [4, Section 2.5]), taking into 

account symmetry of K  and skew-symmetry of N and G , there is a single real orthogonal 

matrix U  such that =NUU T )0,...,0,,...,( 221 JJdiag m=  with  j0 , ==KUU T

),...,,,...,( 12221 nmmIIdiag  +  where j , and =GUU T ( )0,,..., 2]2/[21 JgJgdiag n=  with  

jg  ( 0=jg  is possible for some j). If ]2/[nm  , then for any 0+kmg , the commutativity 

of  and   imposes the following additional restriction on the diagonal elements of  : 

kmkm 22122 +−+ =  , }]2/[,...,1{ mnk − .  Therefore, under conditions (33), the transformation 

UpMq 2/1~ −= reduces Eq. (1) to the form (20), (34)-(36).    □                                                                   

 When 0
~
=N , Theorem 2 coincides with a result from [8].                        

Example 3.  Consider the system (1) with 4

~
IM =  and  

                 



















−

−

−

−

==

3100

1300

0031

0013

~
KK ,



















−

−
==

0010

0001

1000

0100

~
NN ,                     (38)     

and  

                                   



















−

−

−

−

==

0011

0011

1100

1100

2
~

GG .                                              (39)                                                                                 

It is obvious that in this example the matrix G
~

( G ) is not proportional to N
~

( N ). This 

makes Theorem 1 inapplicable. On the other hand, we have  
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                      GNNGNG T ==



















−

−

−

−

= )(

1100

1100

0011

0011

2 ,  

                        KNNKNK T =−=



















−

−

−

−

= )(

0031

0013

3100

1300

, 

and  

                          KGGKGK T =−=



















−

−

−

−

= )(

0011

0011

1100

1100

8 , 

i.e., conditions (33) (or, equivalently, (37)) are satisfied, and, according to Theorem 2, the 

system can be transformed by a real congruence transformation into two independent two-

dimensional subsystems. Indeed, the coordinate transformation Upq = , where  

                                            



















−

−
=

1010

1010

0101

0101

2

1
U    

transforms system (1),(38),(39) into the following decomposed form 

                02
01

10

2

1

2

1

2

1
=








+

















−
+









p

p

p

p

p

p




,     

                04
01

10

01

10
4

4

3

4

3

4

3

4

3
=








+

















−
+

















−
+









p

p

p

p

p

p

p

p








.                                                                                                         

The commutativity conditions (33), i.e. (37), impose serious restrictions on the spectrum 

of the matrix of potential forces. It follows from (34) that the matrix K  must have multiple 

eigenvalues. Although this property is not generic, repeated eigenvalues of K  are not so rare 

in the real-world applications (see [9] and the discussion therein).    

Generalized coordinates q are real, and, as mentioned in the Introduction, there are no 

real coordinate transformations that would completely decouple (diagonalize) system (1). 
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However, it should be noted that conditions (33) are necessary and sufficient for complete 

decoupling this system by means of a complex *congruent transformation. Indeed, according to 

a result from [4], the tree normal matrices K , N  and G  can be simultaneously diagonalized 

by a unitary matrix W  ( IWW =* , ( )
*

 denotes the complex conjugate transpose) if and only 

if conditions (37) are satisfied. Then, the complex transformation WzMq 2/1~ −=  transforms Eq. 

(1) into completely decoupling form. The decoupled complex equations appear in complex 

conjugate pairs, and a typical such equation takes the form: 0)( =+++ jjjjjj zizigz  , where 

j , j  and jg  are real numbers and jz  is complex. Separating the real and the imaginary parts 

of the variable jz  as jjj iz  += , each decoupled complex equation becomes two coupled 

ordinary differential equations in real variables j  and j : 

                   0
01

10

01

10
=








+

















−
+

















−
+









j

j

j

j

j

j

j

j

j

j

j
g


























.                                                                                                        

Therefore, in the configuration space, the completely decoupling achieved as a result of a 

complex transformation is only that of appearance.  

In many applications in science and engineering the potential matrix of the system is 

positive definite ( 0
~
K ). In this case, the assumption of positive definiteness of the symmetric 

matrix M
~

 can be removed. The situation where M
~

 is positive semi-definite arises, for 

example, in mechanics when using redundant coordinates [10], while indefinite M
~

 may occurs 

in the linear feedback control of second-order systems when the closed-loop mass matrix can 

be modified by acceleration feed-back [11]. 

 If 0
~
K , the roles of M

~
 and K

~
 can be reversed in the above theorems to achieve 

decomposition of (1) using real congruence. More precisely, the following assertions are true.   

Theorem 3. Let TMM
~~

= , 0
~~

= TKK , TNN
~~

−= , TGG
~~

−= and mGrank 2
~
= . If 

NG
~~

=  where  , then necessary and sufficient conditions for Eq. (1) to be transformed to 

equation  

                                                0ˆˆˆ =+++ ppppM                                                             (40) 

with  

                                             ),...,,(ˆ
21 ndiagM = , j ,                                             (41) 
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and 

                           )0,...,0,ˆ,...,ˆ(ˆ
221 JJdiag m= ,  ĵ0 ,                                                (42)                                                                                                       

using a real linear change of coordinates are   

                                           MKNKNNKNKM
~~~~~~~~~~ 1111 −−−− =                                                    (43) 

and 

                                         211211 )
~~~~

()
~~~~

( −−−− = KMKNKNKM .                                                  (44) 

 

The real numbers  j (j = 1,…,n) in (41) are eigenvalues of the matrix MK
~~ 1− , while 

the numbers jî  (j = 1,…,m)  in (42) are nonzero eigenvalues  of NK
~~ 1− .  

Theorem 4. Let TMM
~~

= , 0
~~

= TKK , TNN
~~

−= , TGG
~~

−= and mNrank 2
~
= . If the 

following tree conditions are satisfied  

           MKNNKM
~~~~~~ 11 −− = , MKGGKM

~~~~~~ 11 −− = , GKNNKG
~~~~~~ 11 −− = ,                          (45)                                                                                                                         

then there exists a real linear change of coordinates that transforms Eq. (1) to the form 

                                0ˆˆˆ =+++ ppppM                                                                                                                                                                                                        

with  

    
),...,,,...,(ˆ

12221 nmm IIdiagM  += , )0,...,0,ˆ,...,ˆ(ˆ
221 JJdiag m= , j ,  ĵ0 ,                                                        

and  

                                               ( )0,ˆ,...,ˆˆ
2]2/[21 JgJgdiag n= , jg .                                                                                                                                            

If ]2/[nm  , then for any 0ˆ +kmg , kmkm 22122 +−+ =  , }]2/[,...,1{ mnk − . 

Remark 6. If 0
~~

= TMM  and 0
~~

= TKK , then Theorem 3 and Theorem 4 are 

equivalent to Theorem 1 and Theorem 2, respectively. Also, if the potential matrix K
~

 is 

negative definite Theorem 3 and Theorem 4 can be applied after premultiplication Eq. (1) by -

1.   

Remark 7. When 0
~
K , conditions (45) are necessary and sufficient for complete 

decomposition (diagonalization) of the system using a complex *congruent transformation. 

 

4. CONCLUSION 
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This paper deals with linear n-degree-of-freedom systems with potential, circulatory and 

gyroscopic forces. Since circulatory and gyroscopic matrices are skew, it precludes the 

decomposition of such a system into n uncoupled systems through the use of a real coordinate 

change. The best that can be done using a real coordinate change is to decouple the system into 

subsystems each of which has at most two-degrees-of-freedom. The conditions for such a 

decoupling are provided here. Below, we summarize the main findings.  

When the coefficient matrix of gyroscopic forces is proportional to the circulatory one 

then an n-degree-of-freedom linear circulatory gyroscopic potential system in which the 

circulatory matrix has rank 2m n  can be decomposed by a suitable real linear change of 

coordinates into m uncoupled two-degree-of-freedom subsystems and ( 2 )n m−  single-degree 

of freedom subsystems if and only if the two conditions obtained in the paper are satisfied. The 

two-degree-of-freedom subsystems are each circulatory gyroscopic potential subsystems, while 

the single-degree-of-freedom subsystems are each pure potential systems. If the circulatory 

matrix has distinct non-zero eigenvalues then the two necessary and sufficient conditions for 

decoupling the dynamical system reduce to just a single necessary and sufficient condition. 

If the potential, circulatory and gyroscopic matrices pairwise commute with respect to 

the inverse of mass matrix, then the dynamical system decouples through the use of a suitable 

real congruence into a series of independent two-degree-of-freedom subsystems in canonical 

form and single-degree-of-freedom ones. The potential matrix of each two-degree-of-freedom 

subsystem with circulatory and/or gyroscopic terms is proportional to the identity matrix.    

The analogous results are also formulated for a circulatory gyroscopic potential system 

when the potential matrix of the linear dynamical system is assumed to be positive definite and 

the mass matrix is assumed to be only symmetric.   

Several illustrative examples are considered throughout the paper to give clarity of the 

analytical results that are obtained. 
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Ranislav M. BULATOVIĆ, Rade GRUJIČIĆ 

O KONGRUENTNOM RASPREZANJU CIRKULACIONIH 

GIROSKOPSKIH SISTEMA  

Sažetak: 

Razmatra se mogućnost rasprezanja linearnih dinamičkih sistema sa potencijalnim, 

cirkulacionim i giroskopskim silama. Dokazani su kriterijumi koji sadrže uslove egzistencije realnih 

linearnih koordinatnih transformacija, koje dovode do razdvajanja ovih sistema sa konačnim brojem 

stepena slobode na nezavisne podsisteme stepena slobode ne većeg od dva. Iz ovih kriterijuma, kao 

posljedice, dobijeno je više specifičnih rezultata. Rezultati su ilustrovani sa nekoliko numeričkih 

primjera.  

Ključne riječi: linearni sistem, potencijalne sile, cirkulacione sile, giroskopske sile, rasprezanje, 

kongruentna transformacija 


